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I. INTRODUCTION

bDouble-hetero-junction GaA’As/GaAs lasers constitute a key
component in integrated and fiber optical systems. The basic configu-
ration is illustrated in Fig. (la). When a strong dc bias is applied
between the stripe electrodes, the segment of the GaAs layer
immediately below the stripe becomes active, resulting in lasing
action. The GaAs layer has a higher dielectric constant than the
GaAZAs layer. Hence, it is easy to explain the existence of a guiding
mechanism in the vertical direction (i.e. perpendicular to the layers),
by means of a conventional slab waveguide analysis [2]. However,
it has been experimentally observed that the field is also confined in
the transverse direction (i.e., parallel to the layers). This effect
cannot be explained in terms of aninfinite slab waveguide since
no physical mechanism is present for transverse field confinement.

It is now generally accepted that the dielectric properties
of the active region are slightly altered by the lasing action. It
has been assumed by some workers that lasing action causes a slight
increase of the relative dielectric constant in the active region
(of the order of 10-3), which is sufficient to explain field confinement.
Only the real part of the dielectric constant was considered in explaining
transverse field confinement. However, some recent investigatioms [3],
indicate the real part of the dielectric constant in the active region
need no£ be higher and, indeed, may even be lower than that in the
passive region. Modal confinement is shown to be possible by the gain

action itself.
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In previous analysis [3], the x and y directions were treated
independently. For instance, in [3], only the structure which is infinite
in extent in the y direction is considered. In the analysis in this
paper, however, the finiteness in the y direction is taken into account by
the use of the concept of effective dielectric constants (EDC), which has
been successfully used to analyze a number of lossless passive dielectric
waveguides and components [4], [5].

In the following sections we will describe the analysis
of the laser structure and a number of numerical data for the

fundamental mode will be presented.




11 . METHOD OF ANALYSIS

The basic geometry of the GaAs laser is shown in Fig. (la).
A GaAs layer of thickness 2d is sandwiched between two identical
GaAfAs layers of thickness h. When an appropriate d.c bias is
applied between the electrodes A and A', the GaAs region under the
electrodes becomes active and causes a laser action. We model this
effect by assigning the region under the electrode a complex permit-
tivity ei + je!', as shown in Fig. (1b). 1In this figure the presence

of the electrodes is ignored as its effect on the optical field is

4

negligible. From I'ig. (la) we observe that the field is symmetric with

respect tu the y axis and antisymmetric with respect to the x axis.
'herefore a magnetic and electric wall can be placed in the y and x
planes, respectively, without changing the field configurations.
It is, hence, on!y necessary to consider the quadrant illustrated in
Fig. (2). Along the x direction we distinguish two regions: 1I. which
contains the active material and II, which is purely passive.
For the present, all dielectrics are considered lossless.

Region I contains three dielectrics: (1) the active GaAs

with complex dielectric constant

| 1 1

=e! + je! (la)

0 < ¢ << € (1b)

i
where ez > 0 represents the gain mechamism.

(2) the lossless GaAlAs with real ¢, > 0 and

2

(3) the air with e3 = 1. Also we assume the following relations to hold:
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Fig. 1b:

Waveguide model of the GaAs laser.
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) ~ €y (2a)
i =

61 > €2 (2b)

€1 > €y (2c)

A dielectric waveguide, as shown in Fig. (1b) is known to
support the propagation of hybrid modes, classified into two possible
field configurations: EX and EY. These modes can be represented by

x e H . ik z
two scalar potentials, » and ® . Assuming a e 2 dependence,

Maxwells equations [1] in terms of these potentials are:

2.e

1 37¢ H

% €. Jydx e kz¢ (3a)
2
H = (ki - 2oyt (3b)
- 3%
jk e H
el G SO
B c. 3y e (3¢)
2
d
B = (& - S5 (4a)
y X 3x
!
2_H
LY e , 3¢
H, ueokz¢ + dyow (4b)
H

o BT 3

Hz 1€, 3% sz oY kse)
where
P permittivity of free space
&, * relative permittivity in the region of

application

=41
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However, due to the excitation the dominant electric field is in the
y direction. We therefore assume ¢H = 0. Furthermore, because the
differences between El and «, as well as between El and € are small,
we assume the transverse wave numbers are small. This implies that
second derivatives can be neglected and the dominant mode is of the
g7 type with the principal field components Ey, Hx, HZ and EZ

A rigorous solution of Maxwell's equations for the present
laser geometry would be exceedingly complex. However, it is possible
to introduce a simplification by the use of the concept of effective
dielectric constant. If regions I and II were infinitely wide, they
would reduce to the double layered slab structures as shown in
Fig. (3a) and Fig. (3b), respectively. The propagation constants for
these double siab waveguides can be determined by matching the
tangential fields across each boundary. Both these structures can then
be replaced by infinite, homogeneous regions having a effective
dielectric constant, which may be thought of as the dielectric constant
of the hypothetical medium in which the phase velocity is identical
to that of the surface wave in the original (slab) structure. Referring
to Fig. (2), we replace region I and II with vertical slabs of effective
dielectric constant €a1 and €qp> €Ven though these regions are not
infinite in the x direction. The result is the structure shown in
Fig. (3c). We can now solve the eigenvalue equation of this structure
for the propagation constant, which is assumed to be that of the original
structure. Notice that since ?1 is complex, €al must also be complex

to represent the gain mechanism.

St P S BL  WYRAN
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II1. DERIVATION OF THE EIGENVALUE EQUATIONS

In this section we derive the eigenvalue equations for the
structures shown in Fig. (3a), (3b), and (3c) and define the effective
dielectric constant for regions I and II.

Noting that for the EY mode, ¢H = 0, we see from equations
(3a) through (4c) that the tangential components to be matched are Hx

and E, - The relationships between Hx and E, and ¢° are

H o~ 8% (5a)
e

B~ - (5b)
e

Considering the structure in Fig. (3b) and noting that since Ez =0 at

y = 0, we can choose the following function for °.

A cos kyzy d>y>0
6% = < B°cosh (T, (y-d)) + B°sinh (,(y-d)) d+h <y <d (6)
C exp[-@z(y-d-h)] y >d +h

Since the fields must match for all z we also have,

k2 - k2 = k2 >

g2
e
z2 I o y2 2

2 2 2
+ = + £
ko T]2 ko 2 7

where FZ is real and greater than zero, kyz is real and nz is purely
real or purely imaginary. Using equation (6) we match Hx and Ez at

y = d and obtain

A cos ky2 d =B (8a)

A S
kgpsinky,d= =B (8b)

L AT AT
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Similarly at y = d + h we obtain
Bccosh(ﬂzh) # Bssinh(ﬂzh) =C (9a)
n2 c T]2 s
~= B sinh(M,h) + == B cosh(ll,h) = - £,C (9b)
€ 2 e 2 2
2 2
After some manipulation we obtain the eigenvalue equation
e, N, tanh(M,h) + ¢,E
L2 2 272
k. tan k  d=T1, = (10)
E
y2 y2 2 5 €5 :Itanll(nzh)-+ﬂ2

Together with equation (7) we can solve for ky2 and define the effective

dieleciric constant for Fig. (3b) as

Cez = %1 ° <L2> K1)

A similar analysis for Figure (3a) leads to the eigenvalue equation

€ ﬂltanh(ﬂlh) + 6,8,
k ,tanlk ,d =T — (12)
yl yl 1€, e,§ tanh M) + T,
Again
SRS - SRR 2 a2 2
kzl—elko-kyl-ez ko+ﬂ1 k0+§1 (13)

and we define the effective dielectric constant for this structure as

€e1 = €1 " \k / (14)
o
Note, however, that in equations (12) through (14) kzl’ kyl’

nl, 51 and Zl are complex quantities.

However, as a consequence of (1lb), the imaginary parts of all

quantities are much smaller than the corresponding real parts. Writing
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R, " k; + k! (15a)
' " b

kyp = kyp + dky (15b)

W, = 7:; + j'!'l' (15¢)
] "

il = :1 + j!fl (15d)

- ' "

e = ey * Jey (15e)

we take a Taylors series expansion of both sides of equation (12) about

' !

(k I =;s “-;). Ignoring second order and higher order terms and equating
Yy

real and imaginary parts, we get

[ ' et :__'
e T]l tan h( xlh) +¢:2 1

L 1 1
k . tan(k ,d) =T — (16)
" yl €y € Ei tan h (ﬂih ) +ni
and
Lo B [ ' v & Y 1" .
kyllsln(kyl d) + kyl dcos(kyld)] T]l[el cos (k yld)
' sin(k' d) - k" d]-£+ﬂ ¢. cos(k’' d)-i
- & sin( - ) y1 ", 16 51 i
& : L, i 17)
i T]1 ’lcos(kyl A \D' DlZ) (
where
N' =T tanh(M h) + > E'l (18a)

vy 2 ' '
D = F1 €, tanh(ﬂlh) + ¢y 711 (18b)
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" i ' T' ' 2 .n' F,"
N yl[tanl1( 1)+ ﬂ111sec11 M W] + €y &4 (18c)
D" = &' 2T hsech? (M h) + £" 2 tanh (1) h) + N"e 18d)
*1 %2 ' 1 1€ 1 €2 (

The real and imaginary parts of (13) are:

L x 2 iR e et2

ey K ky1 ey K+ Ny k +E& (19)
n,2 ' " T g

e - = 27 2€_€

Observe that (15) and (19) constitute three equations for the three

' W 4 -
y1° ui, ;;. Once these unknowns have been solved, their

unknowns k
value can be substituted into (20) and (17). Note that equation (17)

is a linear equation in k;l, as indeed, it should, since only the first

term of the Taylor's series was kept. Ignoring higher order terms,

equation (14) may be written as

g2 ; 2k’ K4
5 [ .on = cl 2 /_}f_l_, . = v y]. 21
I i L N \ko / +J(“‘1 2 ) £
(o]

Having defined the E.D.C. in equations (14) and (21) for the equivalent
slab structure (Fig. 3c) we can now proceed solving for the wavenumbers in
the x direction with a analysis similar to that in [3]. The tangential
fields we are interested in matching now are Ey and Hz. From equations

(4a) and (4c) we note
E ~ ¢° (22)

H, =5 e



e e
Writing @ as

(A cos (u 3) 0<x < a
e

@ = <
\18 exp[- g (x -a)] x >a

we match the fields at x = a and obtain

I
e~}

A cos(u)

u 2
= A sin(u)

o |8

from which one gets the eigenvalue equation
w = u tan(u)

As before, by matching the fields along the z direction we also get

another equation for u and w

P e
2 2 _[u} _ 2, (w
Kz * 8a1 e \a/ €e2 ko+ \a~

Notice that u = u_ + jui, w = L + jwi are in general complex numbers.
In the following sections three cases will be considered:

(i) Ree , = €55 (ii) Reee

1 1.> €e2’ and (iii) Reee1 < e

e2’

14

(24)

(25)

(26)

(27)

(28)
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IV. RESULTS AND DISCUSSION

In Fig. (4) and Fig. (5) the solution for the equivalent
dielectric constants defined in equations (14) and (21) are displayed for

different values of ei and €1. Since equations (12) and (16) are

identical, Fig. (4) may be used to compute both e;l and ©a2"

were solved by iteration using Muller's Method, convergence was quite

The equations

rapid and fairly insensitive to the starting point. The program is
included in the appendix.
We now proceed to examine the first case (i.e., Reee1 = eez).

First we note that from equation (28) we can solve for

B R . B
v = Y{a ko[r.el eez] u“l (29)

Since Re €.1 = a2 equation (24) can be rewritten as

[

e 2
% = {a" K (Imbe ) -0~} (30)
o e
= = ini = i
where Aqe €a1 €e2' Defining v a koV ImAr-te , we see from equation (27)

that all physical dependence of the transverse wave numbers can be defined
in terms of a single variable |v|, called the normalized gain. Equation
(27) is then solved, again using Muller's Method.

Figure (6) and (7) show the solutions for v, and W, Vs. Ivl.
Figure (6), which indicates the rate of field decay in Region II, shows that
gain (i.e., ImAee > 0) induced modes exist, and are in fact guided throughout.
That is, the gain induced by the imaginary part of the effective dielectric
constant is solely responsible for the field confinement. From figure (8)

as well as from figure (9), which shows the percent of the cross-sectional
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power in Region I, it is clear that the greater the gain, the more field
is concentrated in Region I (active region). The values of the field
intensity at x = a (Fig. 8) have been compared to the results obtained by
Schlosser [3] and the agreement is good.

In Case (ii) the gain as well as the increase in the real part
of the EDC in Region I contributes the confinement mechanism. However,
this case will not be discussed further, because the confinement due
to the real part is understood as the surface wave mechanism.

Case (iii) requires more careful examination. It is known that
a quasi-mode (leaky wave mode) with low loss can exist in a passive
channel waveguide, where the core material has lower refractive index than
the su:rounding medium, provided the core size is appreciably larger
than the wavelength [6]. The latter is always the case in the configura-
tions under study, as we have typically %? ~ 20. As the epithet leaky
suggest, propagation in such a "mode'" is intrinsically accompanied by
power ioss due to leakage from the core into the surrounding medium.
Hence, unless energy is continuously supplied as the wave propagates, the
leaky mode will vanish below a detectable level after propagating over a
finite distance.

In the present situation the supply mechanism is provided by gain
in the region where wave is propagating. Hence, sufficient gain will
sustain a stable cutoff mode, i.e., mode exhibiting no gain or attenuation
outside the core. When this occurs, wr = 0, as the field amplitude in
Region II is expressed as exp[-wr(f - 1)]. We recall that the attenuation
constant of a leaky mode is approximately inversely proportional to the

index depression (see for instance, 1.6-34 of [6]). Hence, the cutoff
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point is achieved with higher gain for decreasing refractive index
depression, involving larger leakage.

For a given refractive index depression, as the gain increases
above the value corresponding to cutoff (i.e., the amount of gain needed
to compensate for lcakage losses), then increasing field confinement
takes place.

On the other hand, physical intuition suggests that field con-
finement is more sensitive to gain increases for smaller depressions.
This is casily shown to be the case by means of the approximate analysis

similar to that of [3]. We begin by again defining v = ako”lqel- €e2

/ ImAee ;
v = ak y/Rebe (1-j —=2—) (31)
2 2 \ lReAeell
Since ReAc,e <0
T——~——T , ImAee .
v = jak +/|Rebe 1-j , (32)
b 5 \ IReAQ T
e
Imle
If —— «< 1, then
[Rese |
e
T-——I g Imde
v =~ jak +/|Rebe 1- (33)
s s K 2 lReAG IJ
e
Let v, =ak_./ lReAeel (34)
ImAGe
Vo O o see—————— (35)
r © 2|Rete |~
e
then v =y gy (36)
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w2
In the case under study ';‘ << 1, therefore,
- 2
& w=vyl - (V) Ny
e ImA€e
and o Rt o o (37)
lReA€ [
e
dw 1
and T _! (38)
d(Imde ) |ReAa |
e e

In other words, the slope of W decreases for increasing depressions.

The occurrence of the above two effects on the numerical solution is
shown in figure (10). In particular, the approximate linearty of v, with
Imﬁce implies the existence of a cross over point for two different values
of ROAGC. Figire (11) shows the solution for the imaginary part of w.

In figure (12) we show the field intensity at x = a, with ImAee as
the variable and ReAee as the parameter. From figure (13), the numerical
results indicate that for depressions less than .00l more gain is required
to maintain guiding than for sma!ler depressions. However, for depressions
larger than approximately .001 the pattern reverses: the greater the
depression the less gain is required to insure guidance. This phenomena,
just discussed above, can also be verified by a approximate solution of
equation (27).

We start by assuming u is close to m/2.

u= (gra) + b (39)

where |a| and |b| Qe 1.

Since |%|2 << 1.

- e p————




2,1 L 2
= ' - E =~ { - — 2 ]
w=vil (v) /\ w3 > =) )
and (27) becomes

1

1/ 2 + a + jb - !
. | . 5 Sy &4 i &
(vr+Jvi) 1 > \~;—*I?;T—/ (2 a ;b)tan(Z a+ib)
i I €
Since ¥ << 1 and ¥, > i v, may be ignored. Furthermore, we note
that taxl(,;+a +jb) ~ -1/(a +jb), and if IReAee‘ is large enough,

i 2
Z+a 1
jv / I(‘<]’ equation (39) becomes:

i

such that |% \

=
(§+a+jb)
e+ o

Solving now for a and b we get

s \
a=-—‘\ s
2 1+v,2
i
¥, o«
bo=T (-t )
2 ‘1+Vi2

To show the behavior at cutoff, we expand equation (28).
2 2 : - . 2
womw t2jww = (a kogReAee + j(ak ) Imbe
2 2 3
u + uy 2Jurui

At cutoff, by definition,wr = 0. It follows, then, that

(ak )ZImAe =2uu
[6) e A )

Using the results from equations (41) and (42)

25

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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Fig. 12: Intensity of the field at x = a vs. ImAee with ReAee
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Imie  (at cutoff) = 21 <a—’;—o, f(—lj?] 7)
It can be immediately seen that, since v, = T,
lmﬁee(at cutoff) = ;L G lReAeeI. That is, the larger the depression,

i
the smaller the gain necessary to insure a guided mode. Equation (45)

is plotted along side the numerical results in figure (13).
Looking at equation (32), it is possible to define a more
general set of variables.

ImAee

R e s e (48)
lReAe l
e

and v A %‘3 \/lReAeel ! (49)

Data, similar to that in figure (10) through (13), is presented in terms of

these variables in figures (14) through (17).

g 4




0.4 -

[ T I i 1 T i !
o
—
X
S
e
O
© Numerical
Q
J o
S 0.
—
0] ] | | | i l 1 | 1
0] 0.002 0.004 0.006 0.008 0.01
Re |Aee| [2a/x=20] o100
Fig. 13;

ImA€e at cutoff vs. Re|de |.
e




31

-1 | ke 1 | = 1
0 0.1 0.2 0.3 04 0.5 06 o7
R
ot %; /TRede T He -108
€
R = Tm/\s(
[Rede |
e
Fig. 14: Real part of W vs R with V' as parameter.
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Imaginary part of W vs. R with V' as parameter.
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Fig. 16: Magnitude of the field at x = a vs. R with V' as parameter.




=

R at Cut Off

34

0.25 T o T =
0.20 -
[Ds) = =
0.10} B
(BN = =
0 ] | |
0.5 10 1L 2.0 2.5 30
v’ Wp-99
y' =22/ [Rene |
v - oo
IRE‘AE I
(5
Fig. 17: R at cutoff vs. V.




T

35

V. CONCLUSIONS

Two dimensional analysis, based on the concept of effective
dielectric constant, was presented. Several numerical results are
provided for the fundamental mode, illustrating gain induced confinement
in the transverse direction. Gain induced modal confinement is shown

possible even for a leaky wave structure and cutoff behavior is

investigated.

B R P BRI e i e




(3]

36

VI. LIST OF REFERENCES

R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill
Book Company, Inc., New York, 1961.

A. Yariv, Quantum Electronics, John Wiley and Sons Inc., New York,
19725,

W. A. Schlosser, "Gain-Induced Modes in Planar Structures,'
Bell System Technical Journal, Vol. 52, No. 6, July-August 1973.

R. M. Knox and P. P. Toulios, ''Integrated Circuits for the Millimeter
Through Optical Frequency Range,'" Proceedings of the Symposium on
Submillimeter Waves, N.Y., N.Y., March 31, April 1 & 2, 1970.

W. McLevige, T. Itoh and R. Mittra, 'New Waveguides Structures for
Millimeter-Wave and Optical Integrated Circuits,'" IEEE Trans.
MTT-23, October 1975.

D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press,
New York, 1974.




e

oOOOODOO0 0N

9

VII. APPENDIX

In this section a program to solve equations (16) and (17) is
presented. The algorithm used was Miller’s method. Convergence
was quite rapid and fairly insensative to the starting point.

THIS PRNGRAM SNLVES EQUATIONS (16) AND (17) USING MULLER’S
METHOD ALL SIIAMTITIES ARF NORMALTZED WITH RESPECY YO
X3, WAVELENGYU(WAVFLY,H,D,E2 MUST RE SUPPLIED, IMAX IS THE
MAX ITMUM NgMaES JF TTFRATIUNS, & INTTIAL GUFSS Z3 MUST BE
SUPPILLIED AS WELL AS THE EXPECTED ERROR (ERROR) OF THE
GuEsSs

1 INODICATFS WHETHFR ETA® 1S RFAL OF IMAGINARY,
E;SiJilg Epga ARE CRITERIA FOR STYOPPING THE ITERATION

coMMON E2,F1,H,D,WAVEL,PI,S
°123,1415

E2s12,32

PIlz2 aP!

WAVELc] E=b

HzS , *WAVEL

De, 252 WAVEL

NORMALIZE ~YTH RESPECT TO K@
HI(FTI/wAVFL ) aN
Da(PIT/AAVEL) D

EPStiey F=S

EPSesy ,E=9

I4AL350Q

EQRQRE DY

ENI OF DATA BLOCK

BEGIN RONT FINDING ROUTINE

THFIEQUATION AILL Rt SOLVED FOR DIFFERENY VALUES OF Ej
ND 1073 Ksi,1

Eiz1o,7=(X=1)n,01

NCeliCed

NC2=@

INTTIAL GUESS
733,481

NELTASERARNR
IF(NE,GTL1) 2332-,01
71=23.DELTA
22=23«NELTA
VALIsF(21)
Val.psF(22)

VAL SsF(2%)

ﬂLL)ltls-zl)l(fe;lii’
An 3-22)1/(2P=
é%l;::if.-?tVlLl-OFLittatVlL?Q(AL‘F[OOEL‘,.V‘L,
CisalLavie(ALAMIaVALLI=DEL I aVAL2eVALY)
NCPehC2el
o 0) Ssat

T. Ss=
I::alzta..nEanv:Ls)/(Gtos-snﬂv(Aas(Gx--a-l.nDELt-C:oVALS)))
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aNelsNelNal

3e
32

S0

Vos(0S(ETaH)

Gt YO 32

VisTAUH (ETaN)

veel,

TOPES aETaVIeEPAXI(Z)aV
RYMEXT(2)nFRav)+ETnVR
Fe2aSIt(7aN)andTii=ETa(E1/EQ) «0S(Z%D) «(TOP)
PETURN

END

FUNCTION ETAC(Z)

COMMON E2,F1,H,D,NAVEL,PI,SY
Sisy,

15 £TA° IMAGINARY?
IF(t1mFR=zea? LE, Q) Sla=l,
ETASGRT(ARS(E1=FE2=2%22))
RETURN

END

FUNCTION XI(2)

COMMON E?,F),H,D,wAVEL,PI,8}
X]=SGRT (Eley,=74n2)

RETURN

END

SUBHOUTINE SS(Z,ET,AX)

CuMHUr E?2,FEy1,H,U,WAVEL,PI,SY

THIS SUARUUTTINE COMPUTES KY?°, SINCE AKY®?=BE’’ AND
FoearysswiRFe? (aBxRM), THIS IS A EQUATION IN TWO

Uik GiWr §, GIVEN FS1 (x1) AND FS2 (X2) FOR SOME VALUES

0F (Kye*,E**) THE SLOPE 1S CNMPUTED,
FSerS (XY’ ETAY,XI*,hY**,E’*)

XywFS (7 ,ET,AX,1,Ex3,1 E=3)
Y2apS(2,ET,AX,=1,E=3,1,E=3)

RMe (¥ 1eX2)/2,E=3

Az (XY=} E=3eRMN) /) ,E=3

SLOPE{®aRM/A ¥ 4.
NGw COMPUTE THE SLOPE FOR E(EQUIVALENT)’® ,vS8, E°°
SLOPEg=],~Z#SLOPEL

TYyPe se,E1,Z,SL0OPEY,SLOPER

FURMATC® *#,3HE1E,G11.4,2X,4HKY’s,G11,4,2X,THSLOPEYS,
1611.4.2‘:7”5L0952'1511.°’

RETUKN

ENOD

FUNCTION FS(Ry,tB2,B83,84,85) .
AlekY’,323FETA’,E3a3X]’,H4=KY*’ ,ASEE’*

COMMNDN E2,EY,H,D,WwAVEL,PI,81

NienPP(nt,Re,64,RS)

Nass3P (hy ,R5,B4,R8S)

BoPsETA®’,A3PeX]’"’

TIPaRP2aTANM(RewH)+F 2283

NIPRA EPnnPaTANH (H2aH) ¢E20R2

TePaUlw (TAMH(uPeH) vslaMa((1,/7COSH(R2aH) ) wn2) ) ¢ER2nDR

RN VAR, P v
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97
i

B

12

9A
13

1a

1S

(o]

16

104
104

31

39

2323+ALAMa(23=22)
ValasF (2)
CRITeARS((2~23)/23)

1F (ABS(VAL4) LEEPS1,OR,CRIT,LE.EPS2) GO TO 98
CONVERGENCFE NUTAINED

IF (NL2,6T.IMAX) GN TO 97 ;

IF CONVERGENCE FALLS GO TQ 97, IF NEITHER OF THE ARQVE
CONDITTONS 4AWE SATISFIED ,0BTAIN NEWw POINTS AND GO BACK (99)
11322

22313

138

VAL LsVAL?

VaLR=EVvALY

valL3svAL4

GO TO 99

COMVERGENCE HAS FAILED,TYPE OUY MESSAGE ANO TERMINATE (101)
TYPE 1o

FORMAT(?® *,“TTFRATION OVER LIMIT’)

TYPE §1,VAL4,CRIT

BORMAT(® '.5"‘V‘L“'.Gllo“:3x.5HCRTTl,Gll.‘)

TYPE 12,2,73,22,21

FURMAT(» *,2H23,614,7,2X,3H23=,614,7,2%,3H22e,614,7,2X,
13m212,514,7)

60 TO ¢

CONVEFGENCE ObTAINED, COMPUTE KY**

YYyPt 13,VAL4,CRIT

FOK“AT(® *,5MVALU3,611,4,3%,5HCRITS,G11,4)

TYPE ya,NC?

FOK4AT(® *,1AHITERATIONEZ, 14)

ETSETA(Z)

AxzxI(2)

TYPE 15,7,91,ET,AX ;
FORAAT(® *,3HKY=2,614,7,3%X,69,2,2%X,4HETAS,G14,7,2X,
13uxT32,614,7)

11.SEFT PLGTYING RLOCK AND DTHER OUTPUT STATYEMENT,
COMPUTF EFFECTIVE DIELFCTRIC CONSTANTY

ELbzzleaZan?

TyPt 16,F1,ED

FORUATC® °,3HE1®,612,5,3X%,3HEQE,G12,5)

FAlL SS(7,FT,AX)

SOLVF FUR SLDPE OF KY’*

CONTINUE
sTnp

END

FUMCTION F(2)

COMMON E2,E1,H,0,WAVEL,PT,8}

ETstTA(2)

IF LTA’ 1S IMAGINARY COSH BECOMES COS ETC,,
TF(51) 31,%1,37

VISSIN(ETaN)
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N2PaR{abPaweDlaHa((1,/COSH(R2aH))an2)¢D2nE20n2
1aTAM (D2 eaH)+D L #E2

Foef ga (STl aN) eyl aNaCOS(RIaD))=HPa(BS*COS(RLD)
1eb 1 aST (] aN)acdSad)n(TIP/NIP)eDInb i «COAS(BIaD)n
F(TIP/DLIP) =B ab1aCNo(31aD) 2 ((TPP/UIP)=(T1P#DRP)
172(M Pex?))

RETURN

END

FUNCTION RPPIRY1,be2,td,RS)
CuMuny  F2,51,H,D, WAVEL,PI, 81
HePa(hSwl, adl2Bd)/(2,0B2)
RETUPN

END

FUNCTINN AP (31,R3,B4,RS)
COMMON thg.llHlL"”AvEL'PI's‘
B3P (BS=2,2812R4)/(2,2B3)
RETURN

END







